/* * huffyuv codec for libavcodec * * Copyright (c) 2002-2003 Michael Niedermayer * * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of * the algorithm used * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * huffyuv codec for libavcodec. */ #include "avcodec.h" #include "internal.h" #include "get_bits.h" #include "put_bits.h" #include "dsputil.h" #include "thread.h" #include "huffman.h" #define VLC_BITS 11 #if HAVE_BIGENDIAN #define B 3 #define G 2 #define R 1 #define A 0 #else #define B 0 #define G 1 #define R 2 #define A 3 #endif typedef enum Predictor { LEFT= 0, PLANE, MEDIAN, } Predictor; typedef struct HYuvContext { AVCodecContext *avctx; Predictor predictor; GetBitContext gb; PutBitContext pb; int interlaced; int decorrelate; int bitstream_bpp; int version; int yuy2; //use yuy2 instead of 422P int bgr32; //use bgr32 instead of bgr24 int width, height; int flags; int context; int picture_number; int last_slice_end; uint8_t *temp[3]; uint64_t stats[3][256]; uint8_t len[3][256]; uint32_t bits[3][256]; uint32_t pix_bgr_map[1<dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16); return src[w-1]; } } static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha) { int i; int r,g,b,a; r = *red; g = *green; b = *blue; a = *alpha; for (i = 0; i < FFMIN(w, 4); i++) { const int rt = src[i * 4 + R]; const int gt = src[i * 4 + G]; const int bt = src[i * 4 + B]; const int at = src[i * 4 + A]; dst[i * 4 + R] = rt - r; dst[i * 4 + G] = gt - g; dst[i * 4 + B] = bt - b; dst[i * 4 + A] = at - a; r = rt; g = gt; b = bt; a = at; } s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16); *red = src[(w - 1) * 4 + R]; *green = src[(w - 1) * 4 + G]; *blue = src[(w - 1) * 4 + B]; *alpha = src[(w - 1) * 4 + A]; } static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue){ int i; int r,g,b; r = *red; g = *green; b = *blue; for (i = 0; i < FFMIN(w,16); i++) { const int rt = src[i*3 + 0]; const int gt = src[i*3 + 1]; const int bt = src[i*3 + 2]; dst[i*3 + 0] = rt - r; dst[i*3 + 1] = gt - g; dst[i*3 + 2] = bt - b; r = rt; g = gt; b = bt; } s->dsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w*3 - 48); *red = src[(w - 1)*3 + 0]; *green = src[(w - 1)*3 + 1]; *blue = src[(w - 1)*3 + 2]; } static int read_len_table(uint8_t *dst, GetBitContext *gb) { int i, val, repeat; for (i = 0; i < 256;) { repeat = get_bits(gb, 3); val = get_bits(gb, 5); if (repeat == 0) repeat = get_bits(gb, 8); if (i + repeat > 256 || get_bits_left(gb) < 0) { av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n"); return -1; } while (repeat--) dst[i++] = val; } return 0; } static int generate_bits_table(uint32_t *dst, const uint8_t *len_table) { int len, index; uint32_t bits = 0; for (len = 32; len > 0; len--) { for (index = 0; index < 256; index++) { if (len_table[index] == len) dst[index] = bits++; } if (bits & 1) { av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n"); return -1; } bits >>= 1; } return 0; } static void generate_joint_tables(HYuvContext *s) { uint16_t symbols[1 << VLC_BITS]; uint16_t bits[1 << VLC_BITS]; uint8_t len[1 << VLC_BITS]; if (s->bitstream_bpp < 24) { int p, i, y, u; for (p = 0; p < 3; p++) { for (i = y = 0; y < 256; y++) { int len0 = s->len[0][y]; int limit = VLC_BITS - len0; if(limit <= 0) continue; for (u = 0; u < 256; u++) { int len1 = s->len[p][u]; if (len1 > limit) continue; len[i] = len0 + len1; bits[i] = (s->bits[0][y] << len1) + s->bits[p][u]; symbols[i] = (y << 8) + u; if(symbols[i] != 0xffff) // reserved to mean "invalid" i++; } } ff_free_vlc(&s->vlc[3 + p]); ff_init_vlc_sparse(&s->vlc[3 + p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0); } } else { uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map; int i, b, g, r, code; int p0 = s->decorrelate; int p1 = !s->decorrelate; // restrict the range to +/-16 because that's pretty much guaranteed to // cover all the combinations that fit in 11 bits total, and it doesn't // matter if we miss a few rare codes. for (i = 0, g = -16; g < 16; g++) { int len0 = s->len[p0][g & 255]; int limit0 = VLC_BITS - len0; if (limit0 < 2) continue; for (b = -16; b < 16; b++) { int len1 = s->len[p1][b & 255]; int limit1 = limit0 - len1; if (limit1 < 1) continue; code = (s->bits[p0][g & 255] << len1) + s->bits[p1][b & 255]; for (r = -16; r < 16; r++) { int len2 = s->len[2][r & 255]; if (len2 > limit1) continue; len[i] = len0 + len1 + len2; bits[i] = (code << len2) + s->bits[2][r & 255]; if (s->decorrelate) { map[i][G] = g; map[i][B] = g + b; map[i][R] = g + r; } else { map[i][B] = g; map[i][G] = b; map[i][R] = r; } i++; } } } ff_free_vlc(&s->vlc[3]); init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0); } } static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length) { GetBitContext gb; int i; init_get_bits(&gb, src, length * 8); for (i = 0; i < 3; i++) { if (read_len_table(s->len[i], &gb) < 0) return -1; if (generate_bits_table(s->bits[i], s->len[i]) < 0) { return -1; } ff_free_vlc(&s->vlc[i]); init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0); } generate_joint_tables(s); return (get_bits_count(&gb) + 7) / 8; } static int read_old_huffman_tables(HYuvContext *s) { GetBitContext gb; int i; init_get_bits(&gb, classic_shift_luma, classic_shift_luma_table_size * 8); if (read_len_table(s->len[0], &gb) < 0) return -1; init_get_bits(&gb, classic_shift_chroma, classic_shift_chroma_table_size * 8); if (read_len_table(s->len[1], &gb) < 0) return -1; for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i]; for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i]; if (s->bitstream_bpp >= 24) { memcpy(s->bits[1], s->bits[0], 256 * sizeof(uint32_t)); memcpy(s->len[1] , s->len [0], 256 * sizeof(uint8_t)); } memcpy(s->bits[2], s->bits[1], 256 * sizeof(uint32_t)); memcpy(s->len[2] , s->len [1], 256 * sizeof(uint8_t)); for (i = 0; i < 3; i++) { ff_free_vlc(&s->vlc[i]); init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0); } generate_joint_tables(s); return 0; } static av_cold void alloc_temp(HYuvContext *s) { int i; if (s->bitstream_bpp<24) { for (i=0; i<3; i++) { s->temp[i]= av_malloc(s->width + 16); } } else { s->temp[0]= av_mallocz(4*s->width + 16); } } static av_cold int common_init(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; s->avctx = avctx; s->flags = avctx->flags; ff_dsputil_init(&s->dsp, avctx); s->width = avctx->width; s->height = avctx->height; av_assert1(s->width > 0 && s->height > 0); return 0; } #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER static av_cold int decode_init(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; common_init(avctx); memset(s->vlc, 0, 3 * sizeof(VLC)); avctx->coded_frame = &s->picture; avcodec_get_frame_defaults(&s->picture); s->interlaced = s->height > 288; s->bgr32 = 1; if (avctx->extradata_size) { if ((avctx->bits_per_coded_sample & 7) && avctx->bits_per_coded_sample != 12) s->version = 1; // do such files exist at all? else s->version = 2; } else s->version = 0; if (s->version == 2) { int method, interlace; if (avctx->extradata_size < 4) return -1; method = ((uint8_t*)avctx->extradata)[0]; s->decorrelate = method & 64 ? 1 : 0; s->predictor = method & 63; s->bitstream_bpp = ((uint8_t*)avctx->extradata)[1]; if (s->bitstream_bpp == 0) s->bitstream_bpp = avctx->bits_per_coded_sample & ~7; interlace = (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4; s->interlaced = (interlace == 1) ? 1 : (interlace == 2) ? 0 : s->interlaced; s->context = ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0; if ( read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4, avctx->extradata_size - 4) < 0) return -1; }else{ switch (avctx->bits_per_coded_sample & 7) { case 1: s->predictor = LEFT; s->decorrelate = 0; break; case 2: s->predictor = LEFT; s->decorrelate = 1; break; case 3: s->predictor = PLANE; s->decorrelate = avctx->bits_per_coded_sample >= 24; break; case 4: s->predictor = MEDIAN; s->decorrelate = 0; break; default: s->predictor = LEFT; //OLD s->decorrelate = 0; break; } s->bitstream_bpp = avctx->bits_per_coded_sample & ~7; s->context = 0; if (read_old_huffman_tables(s) < 0) return -1; } switch (s->bitstream_bpp) { case 12: avctx->pix_fmt = AV_PIX_FMT_YUV420P; break; case 16: if (s->yuy2) { avctx->pix_fmt = AV_PIX_FMT_YUYV422; } else { avctx->pix_fmt = AV_PIX_FMT_YUV422P; } break; case 24: case 32: if (s->bgr32) { avctx->pix_fmt = AV_PIX_FMT_RGB32; } else { avctx->pix_fmt = AV_PIX_FMT_BGR24; } break; default: return AVERROR_INVALIDDATA; } if ((avctx->pix_fmt == AV_PIX_FMT_YUV422P || avctx->pix_fmt == AV_PIX_FMT_YUV420P) && avctx->width & 1) { av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n"); return AVERROR_INVALIDDATA; } if (s->predictor == MEDIAN && avctx->pix_fmt == AV_PIX_FMT_YUV422P && avctx->width%4) { av_log(avctx, AV_LOG_ERROR, "width must be a multiple of 4 this colorspace and predictor\n"); return AVERROR_INVALIDDATA; } alloc_temp(s); return 0; } static av_cold int decode_init_thread_copy(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i; avctx->coded_frame= &s->picture; alloc_temp(s); for (i = 0; i < 6; i++) s->vlc[i].table = NULL; if (s->version == 2) { if (read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4, avctx->extradata_size) < 0) return -1; } else { if (read_old_huffman_tables(s) < 0) return -1; } return 0; } #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */ #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf) { int i; int index = 0; for (i = 0; i < 256;) { int val = len[i]; int repeat = 0; for (; i < 256 && len[i] == val && repeat < 255; i++) repeat++; av_assert0(val < 32 && val >0 && repeat<256 && repeat>0); if (repeat > 7) { buf[index++] = val; buf[index++] = repeat; } else { buf[index++] = val | (repeat << 5); } } return index; } static av_cold int encode_init(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i, j; common_init(avctx); avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772 avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132 s->version = 2; avctx->coded_frame = &s->picture; switch (avctx->pix_fmt) { case AV_PIX_FMT_YUV420P: case AV_PIX_FMT_YUV422P: if (s->width & 1) { av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n"); return AVERROR(EINVAL); } s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16; break; case AV_PIX_FMT_RGB32: s->bitstream_bpp = 32; break; case AV_PIX_FMT_RGB24: s->bitstream_bpp = 24; break; default: av_log(avctx, AV_LOG_ERROR, "format not supported\n"); return -1; } avctx->bits_per_coded_sample = s->bitstream_bpp; s->decorrelate = s->bitstream_bpp >= 24; s->predictor = avctx->prediction_method; s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0; if (avctx->context_model == 1) { s->context = avctx->context_model; if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) { av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with " "2 pass huffyuv encoding\n"); return -1; } }else s->context= 0; if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) { if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) { av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use " "vcodec=ffvhuff or format=422p\n"); return -1; } if (avctx->context_model) { av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported " "by huffyuv; use vcodec=ffvhuff\n"); return -1; } if (s->interlaced != ( s->height > 288 )) av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n"); } if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) { av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n"); return -1; } ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6); ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp; ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20; if (s->context) ((uint8_t*)avctx->extradata)[2] |= 0x40; ((uint8_t*)avctx->extradata)[3] = 0; s->avctx->extradata_size = 4; if (avctx->stats_in) { char *p = avctx->stats_in; for (i = 0; i < 3; i++) for (j = 0; j < 256; j++) s->stats[i][j] = 1; for (;;) { for (i = 0; i < 3; i++) { char *next; for (j = 0; j < 256; j++) { s->stats[i][j] += strtol(p, &next, 0); if (next == p) return -1; p = next; } } if (p[0] == 0 || p[1] == 0 || p[2] == 0) break; } } else { for (i = 0; i < 3; i++) for (j = 0; j < 256; j++) { int d = FFMIN(j, 256 - j); s->stats[i][j] = 100000000 / (d + 1); } } for (i = 0; i < 3; i++) { ff_huff_gen_len_table(s->len[i], s->stats[i]); if (generate_bits_table(s->bits[i], s->len[i]) < 0) { return -1; } s->avctx->extradata_size += store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]); } if (s->context) { for (i = 0; i < 3; i++) { int pels = s->width * s->height / (i ? 40 : 10); for (j = 0; j < 256; j++) { int d = FFMIN(j, 256 - j); s->stats[i][j] = pels/(d + 1); } } } else { for (i = 0; i < 3; i++) for (j = 0; j < 256; j++) s->stats[i][j]= 0; } alloc_temp(s); s->picture_number=0; return 0; } #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */ /* TODO instead of restarting the read when the code isn't in the first level * of the joint table, jump into the 2nd level of the individual table. */ #define READ_2PIX(dst0, dst1, plane1){\ uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\ if(code != 0xffff){\ dst0 = code>>8;\ dst1 = code;\ }else{\ dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\ dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\ }\ } static void decode_422_bitstream(HYuvContext *s, int count) { int i; count /= 2; if (count >= (get_bits_left(&s->gb)) / (31 * 4)) { for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1); READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2); } } else { for (i = 0; i < count; i++) { READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1); READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2); } } } static void decode_gray_bitstream(HYuvContext *s, int count) { int i; count/=2; if (count >= (get_bits_left(&s->gb)) / (31 * 2)) { for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) { READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0); } } else { for(i=0; itemp[0][2 * i], s->temp[0][2 * i + 1], 0); } } } #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER static int encode_422_bitstream(HYuvContext *s, int offset, int count) { int i; const uint8_t *y = s->temp[0] + offset; const uint8_t *u = s->temp[1] + offset / 2; const uint8_t *v = s->temp[2] + offset / 2; if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOAD4\ int y0 = y[2 * i];\ int y1 = y[2 * i + 1];\ int u0 = u[i];\ int v0 = v[i]; count /= 2; if (s->flags & CODEC_FLAG_PASS1) { for(i = 0; i < count; i++) { LOAD4; s->stats[0][y0]++; s->stats[1][u0]++; s->stats[0][y1]++; s->stats[2][v0]++; } } if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT) return 0; if (s->context) { for (i = 0; i < count; i++) { LOAD4; s->stats[0][y0]++; put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]); s->stats[1][u0]++; put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]); s->stats[0][y1]++; put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]); s->stats[2][v0]++; put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]); } } else { for(i = 0; i < count; i++) { LOAD4; put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]); put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]); put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]); put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]); } } return 0; } static int encode_gray_bitstream(HYuvContext *s, int count) { int i; if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOAD2\ int y0 = s->temp[0][2 * i];\ int y1 = s->temp[0][2 * i + 1]; #define STAT2\ s->stats[0][y0]++;\ s->stats[0][y1]++; #define WRITE2\ put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\ put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]); count /= 2; if (s->flags & CODEC_FLAG_PASS1) { for (i = 0; i < count; i++) { LOAD2; STAT2; } } if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT) return 0; if (s->context) { for (i = 0; i < count; i++) { LOAD2; STAT2; WRITE2; } } else { for (i = 0; i < count; i++) { LOAD2; WRITE2; } } return 0; } #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */ static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha) { int i; for (i = 0; i < count; i++) { int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1); if (code != -1) { *(uint32_t*)&s->temp[0][4 * i] = s->pix_bgr_map[code]; } else if(decorrelate) { s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3); s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4 * i + G]; s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4 * i + G]; } else { s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3); s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3); s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); } if (alpha) s->temp[0][4 * i + A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); } } static void decode_bgr_bitstream(HYuvContext *s, int count) { if (s->decorrelate) { if (s->bitstream_bpp==24) decode_bgr_1(s, count, 1, 0); else decode_bgr_1(s, count, 1, 1); } else { if (s->bitstream_bpp==24) decode_bgr_1(s, count, 0, 0); else decode_bgr_1(s, count, 0, 1); } } static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes) { int i; if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count) { av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n"); return -1; } #define LOAD3\ int g = s->temp[0][planes==3 ? 3*i + 1 : 4*i + G];\ int b = (s->temp[0][planes==3 ? 3*i + 2 : 4*i + B] - g) & 0xff;\ int r = (s->temp[0][planes==3 ? 3*i + 0 : 4*i + R] - g) & 0xff;\ int a = s->temp[0][planes*i + A]; #define STAT3\ s->stats[0][b]++;\ s->stats[1][g]++;\ s->stats[2][r]++;\ if(planes==4) s->stats[2][a]++; #define WRITE3\ put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\ put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\ put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\ if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]); if ((s->flags & CODEC_FLAG_PASS1) && (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) { for (i = 0; i < count; i++) { LOAD3; STAT3; } } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) { for (i = 0; i < count; i++) { LOAD3; STAT3; WRITE3; } } else { for (i = 0; i < count; i++) { LOAD3; WRITE3; } } return 0; } #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER static void draw_slice(HYuvContext *s, int y) { int h, cy, i; int offset[AV_NUM_DATA_POINTERS]; if (s->avctx->draw_horiz_band==NULL) return; h = y - s->last_slice_end; y -= h; if (s->bitstream_bpp == 12) { cy = y>>1; } else { cy = y; } offset[0] = s->picture.linesize[0]*y; offset[1] = s->picture.linesize[1]*cy; offset[2] = s->picture.linesize[2]*cy; for (i = 3; i < AV_NUM_DATA_POINTERS; i++) offset[i] = 0; emms_c(); s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h); s->last_slice_end = y + h; } static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; HYuvContext *s = avctx->priv_data; const int width = s->width; const int width2 = s->width>>1; const int height = s->height; int fake_ystride, fake_ustride, fake_vstride; AVFrame * const p = &s->picture; int table_size = 0; AVFrame *picture = data; av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->bitstream_buffer) return AVERROR(ENOMEM); memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE); s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size / 4); if (p->data[0]) ff_thread_release_buffer(avctx, p); p->reference = 0; if (ff_thread_get_buffer(avctx, p) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } if (s->context) { table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size); if (table_size < 0) return -1; } if ((unsigned)(buf_size-table_size) >= INT_MAX / 8) return -1; init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size) * 8); fake_ystride = s->interlaced ? p->linesize[0] * 2 : p->linesize[0]; fake_ustride = s->interlaced ? p->linesize[1] * 2 : p->linesize[1]; fake_vstride = s->interlaced ? p->linesize[2] * 2 : p->linesize[2]; s->last_slice_end = 0; if (s->bitstream_bpp < 24) { int y, cy; int lefty, leftu, leftv; int lefttopy, lefttopu, lefttopv; if (s->yuy2) { p->data[0][3] = get_bits(&s->gb, 8); p->data[0][2] = get_bits(&s->gb, 8); p->data[0][1] = get_bits(&s->gb, 8); p->data[0][0] = get_bits(&s->gb, 8); av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n"); return -1; } else { leftv = p->data[2][0] = get_bits(&s->gb, 8); lefty = p->data[0][1] = get_bits(&s->gb, 8); leftu = p->data[1][0] = get_bits(&s->gb, 8); p->data[0][0] = get_bits(&s->gb, 8); switch (s->predictor) { case LEFT: case PLANE: decode_422_bitstream(s, width-2); lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty); if (!(s->flags&CODEC_FLAG_GRAY)) { leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu); leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv); } for (cy = y = 1; y < s->height; y++, cy++) { uint8_t *ydst, *udst, *vdst; if (s->bitstream_bpp == 12) { decode_gray_bitstream(s, width); ydst = p->data[0] + p->linesize[0] * y; lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty); if (s->predictor == PLANE) { if (y > s->interlaced) s->dsp.add_bytes(ydst, ydst - fake_ystride, width); } y++; if (y >= s->height) break; } draw_slice(s, y); ydst = p->data[0] + p->linesize[0]*y; udst = p->data[1] + p->linesize[1]*cy; vdst = p->data[2] + p->linesize[2]*cy; decode_422_bitstream(s, width); lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty); if (!(s->flags & CODEC_FLAG_GRAY)) { leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu); leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv); } if (s->predictor == PLANE) { if (cy > s->interlaced) { s->dsp.add_bytes(ydst, ydst - fake_ystride, width); if (!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.add_bytes(udst, udst - fake_ustride, width2); s->dsp.add_bytes(vdst, vdst - fake_vstride, width2); } } } } draw_slice(s, height); break; case MEDIAN: /* first line except first 2 pixels is left predicted */ decode_422_bitstream(s, width - 2); lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width - 2, lefty); if (!(s->flags & CODEC_FLAG_GRAY)) { leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu); leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv); } cy = y = 1; /* second line is left predicted for interlaced case */ if (s->interlaced) { decode_422_bitstream(s, width); lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty); if (!(s->flags & CODEC_FLAG_GRAY)) { leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu); leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv); } y++; cy++; } /* next 4 pixels are left predicted too */ decode_422_bitstream(s, 4); lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty); if (!(s->flags&CODEC_FLAG_GRAY)) { leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu); leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv); } /* next line except the first 4 pixels is median predicted */ lefttopy = p->data[0][3]; decode_422_bitstream(s, width - 4); s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy); if (!(s->flags&CODEC_FLAG_GRAY)) { lefttopu = p->data[1][1]; lefttopv = p->data[2][1]; s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1] + 2, s->temp[1], width2 - 2, &leftu, &lefttopu); s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2] + 2, s->temp[2], width2 - 2, &leftv, &lefttopv); } y++; cy++; for (; ybitstream_bpp == 12) { while (2 * cy > y) { decode_gray_bitstream(s, width); ydst = p->data[0] + p->linesize[0] * y; s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); y++; } if (y >= height) break; } draw_slice(s, y); decode_422_bitstream(s, width); ydst = p->data[0] + p->linesize[0] * y; udst = p->data[1] + p->linesize[1] * cy; vdst = p->data[2] + p->linesize[2] * cy; s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy); if (!(s->flags & CODEC_FLAG_GRAY)) { s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu); s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv); } } draw_slice(s, height); break; } } } else { int y; int leftr, leftg, leftb, lefta; const int last_line = (height - 1) * p->linesize[0]; if (s->bitstream_bpp == 32) { lefta = p->data[0][last_line+A] = get_bits(&s->gb, 8); leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8); leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8); leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8); } else { leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8); leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8); leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8); lefta = p->data[0][last_line+A] = 255; skip_bits(&s->gb, 8); } if (s->bgr32) { switch (s->predictor) { case LEFT: case PLANE: decode_bgr_bitstream(s, width - 1); s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width - 1, &leftr, &leftg, &leftb, &lefta); for (y = s->height - 2; y >= 0; y--) { //Yes it is stored upside down. decode_bgr_bitstream(s, width); s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta); if (s->predictor == PLANE) { if (s->bitstream_bpp != 32) lefta = 0; if ((y & s->interlaced) == 0 && y < s->height - 1 - s->interlaced) { s->dsp.add_bytes(p->data[0] + p->linesize[0] * y, p->data[0] + p->linesize[0] * y + fake_ystride, fake_ystride); } } } // just 1 large slice as this is not possible in reverse order draw_slice(s, height); break; default: av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n"); } }else{ av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n"); return -1; } } emms_c(); *picture = *p; *data_size = sizeof(AVFrame); return (get_bits_count(&s->gb) + 31) / 32 * 4 + table_size; } #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */ static int common_end(HYuvContext *s) { int i; for(i = 0; i < 3; i++) { av_freep(&s->temp[i]); } return 0; } #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER static av_cold int decode_end(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; int i; if (s->picture.data[0]) avctx->release_buffer(avctx, &s->picture); common_end(s); av_freep(&s->bitstream_buffer); for (i = 0; i < 6; i++) { ff_free_vlc(&s->vlc[i]); } return 0; } #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */ #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet) { HYuvContext *s = avctx->priv_data; const int width = s->width; const int width2 = s->width>>1; const int height = s->height; const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0]; const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1]; const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2]; AVFrame * const p = &s->picture; int i, j, size = 0, ret; if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) return ret; *p = *pict; p->pict_type = AV_PICTURE_TYPE_I; p->key_frame = 1; if (s->context) { for (i = 0; i < 3; i++) { ff_huff_gen_len_table(s->len[i], s->stats[i]); if (generate_bits_table(s->bits[i], s->len[i]) < 0) return -1; size += store_table(s, s->len[i], &pkt->data[size]); } for (i = 0; i < 3; i++) for (j = 0; j < 256; j++) s->stats[i][j] >>= 1; } init_put_bits(&s->pb, pkt->data + size, pkt->size - size); if (avctx->pix_fmt == AV_PIX_FMT_YUV422P || avctx->pix_fmt == AV_PIX_FMT_YUV420P) { int lefty, leftu, leftv, y, cy; put_bits(&s->pb, 8, leftv = p->data[2][0]); put_bits(&s->pb, 8, lefty = p->data[0][1]); put_bits(&s->pb, 8, leftu = p->data[1][0]); put_bits(&s->pb, 8, p->data[0][0]); lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0); leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0); leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0); encode_422_bitstream(s, 2, width-2); if (s->predictor==MEDIAN) { int lefttopy, lefttopu, lefttopv; cy = y = 1; if (s->interlaced) { lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty); leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu); leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv); encode_422_bitstream(s, 0, width); y++; cy++; } lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty); leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu); leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv); encode_422_bitstream(s, 0, 4); lefttopy = p->data[0][3]; lefttopu = p->data[1][1]; lefttopv = p->data[2][1]; s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy); s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu); s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv); encode_422_bitstream(s, 0, width - 4); y++; cy++; for (; y < height; y++,cy++) { uint8_t *ydst, *udst, *vdst; if (s->bitstream_bpp == 12) { while (2 * cy > y) { ydst = p->data[0] + p->linesize[0] * y; s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy); encode_gray_bitstream(s, width); y++; } if (y >= height) break; } ydst = p->data[0] + p->linesize[0] * y; udst = p->data[1] + p->linesize[1] * cy; vdst = p->data[2] + p->linesize[2] * cy; s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy); s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu); s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv); encode_422_bitstream(s, 0, width); } } else { for (cy = y = 1; y < height; y++, cy++) { uint8_t *ydst, *udst, *vdst; /* encode a luma only line & y++ */ if (s->bitstream_bpp == 12) { ydst = p->data[0] + p->linesize[0] * y; if (s->predictor == PLANE && s->interlaced < y) { s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width); lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty); } else { lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty); } encode_gray_bitstream(s, width); y++; if (y >= height) break; } ydst = p->data[0] + p->linesize[0] * y; udst = p->data[1] + p->linesize[1] * cy; vdst = p->data[2] + p->linesize[2] * cy; if (s->predictor == PLANE && s->interlaced < cy) { s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width); s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2); s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2); lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty); leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu); leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv); } else { lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty); leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu); leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv); } encode_422_bitstream(s, 0, width); } } } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) { uint8_t *data = p->data[0] + (height - 1) * p->linesize[0]; const int stride = -p->linesize[0]; const int fake_stride = -fake_ystride; int y; int leftr, leftg, leftb, lefta; put_bits(&s->pb, 8, lefta = data[A]); put_bits(&s->pb, 8, leftr = data[R]); put_bits(&s->pb, 8, leftg = data[G]); put_bits(&s->pb, 8, leftb = data[B]); sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1, &leftr, &leftg, &leftb, &lefta); encode_bgra_bitstream(s, width - 1, 4); for (y = 1; y < s->height; y++) { uint8_t *dst = data + y*stride; if (s->predictor == PLANE && s->interlaced < y) { s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4); sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta); } else { sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta); } encode_bgra_bitstream(s, width, 4); } }else if(avctx->pix_fmt == AV_PIX_FMT_RGB24){ uint8_t *data = p->data[0] + (height-1)*p->linesize[0]; const int stride = -p->linesize[0]; const int fake_stride = -fake_ystride; int y; int leftr, leftg, leftb; put_bits(&s->pb, 8, leftr= data[0]); put_bits(&s->pb, 8, leftg= data[1]); put_bits(&s->pb, 8, leftb= data[2]); put_bits(&s->pb, 8, 0); sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb); encode_bgra_bitstream(s, width-1, 3); for(y=1; yheight; y++){ uint8_t *dst = data + y*stride; if(s->predictor == PLANE && s->interlaced < y){ s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3); sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb); }else{ sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb); } encode_bgra_bitstream(s, width, 3); } } else { av_log(avctx, AV_LOG_ERROR, "Format not supported!\n"); } emms_c(); size += (put_bits_count(&s->pb) + 31) / 8; put_bits(&s->pb, 16, 0); put_bits(&s->pb, 15, 0); size /= 4; if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) { int j; char *p = avctx->stats_out; char *end = p + 1024*30; for (i = 0; i < 3; i++) { for (j = 0; j < 256; j++) { snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]); p += strlen(p); s->stats[i][j]= 0; } snprintf(p, end-p, "\n"); p++; } } else avctx->stats_out[0] = '\0'; if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) { flush_put_bits(&s->pb); s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size); } s->picture_number++; pkt->size = size * 4; pkt->flags |= AV_PKT_FLAG_KEY; *got_packet = 1; return 0; } static av_cold int encode_end(AVCodecContext *avctx) { HYuvContext *s = avctx->priv_data; common_end(s); av_freep(&avctx->extradata); av_freep(&avctx->stats_out); return 0; } #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */ #if CONFIG_HUFFYUV_DECODER AVCodec ff_huffyuv_decoder = { .name = "huffyuv", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_HUFFYUV, .priv_data_size = sizeof(HYuvContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"), }; #endif #if CONFIG_FFVHUFF_DECODER AVCodec ff_ffvhuff_decoder = { .name = "ffvhuff", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_FFVHUFF, .priv_data_size = sizeof(HYuvContext), .init = decode_init, .close = decode_end, .decode = decode_frame, .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS, .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy), .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"), }; #endif #if CONFIG_HUFFYUV_ENCODER AVCodec ff_huffyuv_encoder = { .name = "huffyuv", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_HUFFYUV, .priv_data_size = sizeof(HYuvContext), .init = encode_init, .encode2 = encode_frame, .close = encode_end, .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE }, .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"), }; #endif #if CONFIG_FFVHUFF_ENCODER AVCodec ff_ffvhuff_encoder = { .name = "ffvhuff", .type = AVMEDIA_TYPE_VIDEO, .id = AV_CODEC_ID_FFVHUFF, .priv_data_size = sizeof(HYuvContext), .init = encode_init, .encode2 = encode_frame, .close = encode_end, .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE }, .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"), }; #endif