/* * TAK decoder * Copyright (c) 2012 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * TAK (Tom's lossless Audio Kompressor) decoder * @author Paul B Mahol */ #include "tak.h" #include "avcodec.h" #include "unary.h" #include "dsputil.h" #define MAX_SUBFRAMES 8 ///< max number of subframes per channel #define MAX_PREDICTORS 256 typedef struct MCDParam { int8_t present; ///< is decorrelation parameters available for this channel int8_t index; ///< index into array of decorrelation types int8_t chan1; int8_t chan2; } MCDParam; typedef struct TAKDecContext { AVCodecContext *avctx; ///< parent AVCodecContext AVFrame frame; ///< AVFrame for decoded output DSPContext dsp; TAKStreamInfo ti; GetBitContext gb; ///< bitstream reader initialized to start at the current frame int nb_samples; ///< number of samples in the current frame int32_t *decode_buffer; int decode_buffer_size; int32_t *decoded[TAK_MAX_CHANNELS]; ///< decoded samples for each channel int8_t lpc_mode[TAK_MAX_CHANNELS]; int8_t sample_shift[TAK_MAX_CHANNELS]; ///< shift applied to every sample in the channel int32_t xred; int size; int ared; int filter_order; int16_t predictors[MAX_PREDICTORS]; int nb_subframes; ///< number of subframes in the current frame int16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples int subframe_scale; int8_t dmode; ///< channel decorrelation type in the current frame int8_t dshift; int16_t dfactor; int8_t dval1; int8_t dval2; MCDParam mcdparams[TAK_MAX_CHANNELS]; ///< multichannel decorrelation parameters int wlength; int uval; int rval; int8_t coding_mode[128]; DECLARE_ALIGNED(16, int16_t, filter)[MAX_PREDICTORS]; DECLARE_ALIGNED(16, int16_t, residues)[544]; } TAKDecContext; static const int8_t mc_dmodes[] = { 1, 3, 4, 6, }; static const uint16_t predictor_sizes[] = { 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 160, 192, 224, 256, 0, }; static const struct CParam { int init; int escape; int scale; int aescape; int bias; } xcodes[50] = { { 0x01, 0x0000001, 0x0000001, 0x0000003, 0x0000008 }, { 0x02, 0x0000003, 0x0000001, 0x0000007, 0x0000006 }, { 0x03, 0x0000005, 0x0000002, 0x000000E, 0x000000D }, { 0x03, 0x0000003, 0x0000003, 0x000000D, 0x0000018 }, { 0x04, 0x000000B, 0x0000004, 0x000001C, 0x0000019 }, { 0x04, 0x0000006, 0x0000006, 0x000001A, 0x0000030 }, { 0x05, 0x0000016, 0x0000008, 0x0000038, 0x0000032 }, { 0x05, 0x000000C, 0x000000C, 0x0000034, 0x0000060 }, { 0x06, 0x000002C, 0x0000010, 0x0000070, 0x0000064 }, { 0x06, 0x0000018, 0x0000018, 0x0000068, 0x00000C0 }, { 0x07, 0x0000058, 0x0000020, 0x00000E0, 0x00000C8 }, { 0x07, 0x0000030, 0x0000030, 0x00000D0, 0x0000180 }, { 0x08, 0x00000B0, 0x0000040, 0x00001C0, 0x0000190 }, { 0x08, 0x0000060, 0x0000060, 0x00001A0, 0x0000300 }, { 0x09, 0x0000160, 0x0000080, 0x0000380, 0x0000320 }, { 0x09, 0x00000C0, 0x00000C0, 0x0000340, 0x0000600 }, { 0x0A, 0x00002C0, 0x0000100, 0x0000700, 0x0000640 }, { 0x0A, 0x0000180, 0x0000180, 0x0000680, 0x0000C00 }, { 0x0B, 0x0000580, 0x0000200, 0x0000E00, 0x0000C80 }, { 0x0B, 0x0000300, 0x0000300, 0x0000D00, 0x0001800 }, { 0x0C, 0x0000B00, 0x0000400, 0x0001C00, 0x0001900 }, { 0x0C, 0x0000600, 0x0000600, 0x0001A00, 0x0003000 }, { 0x0D, 0x0001600, 0x0000800, 0x0003800, 0x0003200 }, { 0x0D, 0x0000C00, 0x0000C00, 0x0003400, 0x0006000 }, { 0x0E, 0x0002C00, 0x0001000, 0x0007000, 0x0006400 }, { 0x0E, 0x0001800, 0x0001800, 0x0006800, 0x000C000 }, { 0x0F, 0x0005800, 0x0002000, 0x000E000, 0x000C800 }, { 0x0F, 0x0003000, 0x0003000, 0x000D000, 0x0018000 }, { 0x10, 0x000B000, 0x0004000, 0x001C000, 0x0019000 }, { 0x10, 0x0006000, 0x0006000, 0x001A000, 0x0030000 }, { 0x11, 0x0016000, 0x0008000, 0x0038000, 0x0032000 }, { 0x11, 0x000C000, 0x000C000, 0x0034000, 0x0060000 }, { 0x12, 0x002C000, 0x0010000, 0x0070000, 0x0064000 }, { 0x12, 0x0018000, 0x0018000, 0x0068000, 0x00C0000 }, { 0x13, 0x0058000, 0x0020000, 0x00E0000, 0x00C8000 }, { 0x13, 0x0030000, 0x0030000, 0x00D0000, 0x0180000 }, { 0x14, 0x00B0000, 0x0040000, 0x01C0000, 0x0190000 }, { 0x14, 0x0060000, 0x0060000, 0x01A0000, 0x0300000 }, { 0x15, 0x0160000, 0x0080000, 0x0380000, 0x0320000 }, { 0x15, 0x00C0000, 0x00C0000, 0x0340000, 0x0600000 }, { 0x16, 0x02C0000, 0x0100000, 0x0700000, 0x0640000 }, { 0x16, 0x0180000, 0x0180000, 0x0680000, 0x0C00000 }, { 0x17, 0x0580000, 0x0200000, 0x0E00000, 0x0C80000 }, { 0x17, 0x0300000, 0x0300000, 0x0D00000, 0x1800000 }, { 0x18, 0x0B00000, 0x0400000, 0x1C00000, 0x1900000 }, { 0x18, 0x0600000, 0x0600000, 0x1A00000, 0x3000000 }, { 0x19, 0x1600000, 0x0800000, 0x3800000, 0x3200000 }, { 0x19, 0x0C00000, 0x0C00000, 0x3400000, 0x6000000 }, { 0x1A, 0x2C00000, 0x1000000, 0x7000000, 0x6400000 }, { 0x1A, 0x1800000, 0x1800000, 0x6800000, 0xC000000 }, }; static int tak_set_bps(AVCodecContext *avctx, int bps) { switch (bps) { case 8: avctx->sample_fmt = AV_SAMPLE_FMT_U8P; break; case 16: avctx->sample_fmt = AV_SAMPLE_FMT_S16P; break; case 24: avctx->sample_fmt = AV_SAMPLE_FMT_S32P; break; default: av_log(avctx, AV_LOG_ERROR, "invalid/unsupported bits per sample\n"); return AVERROR_INVALIDDATA; } return 0; } static int get_shift(int sample_rate) { int shift; if (sample_rate < 11025) shift = 3; else if (sample_rate < 22050) shift = 2; else if (sample_rate < 44100) shift = 1; else shift = 0; return shift; } static int get_scale(int sample_rate, int shift) { return FFALIGN(sample_rate + 511 >> 9, 4) << shift; } static av_cold int tak_decode_init(AVCodecContext *avctx) { TAKDecContext *s = avctx->priv_data; int ret; ff_tak_init_crc(); ff_dsputil_init(&s->dsp, avctx); s->avctx = avctx; avcodec_get_frame_defaults(&s->frame); avctx->coded_frame = &s->frame; s->uval = get_scale(avctx->sample_rate, get_shift(avctx->sample_rate)); s->subframe_scale = get_scale(avctx->sample_rate, 1); if ((ret = tak_set_bps(avctx, avctx->bits_per_coded_sample)) < 0) return ret; return 0; } static int get_code(GetBitContext *gb, int nbits) { if (nbits == 1) { skip_bits1(gb); return 0; } else { return get_sbits(gb, nbits); } } static void decode_lpc(int32_t *coeffs, int mode, int length) { int i, a1, a2, a3, a4, a5; if (length < 2) return; if (mode == 1) { a1 = *coeffs++; for (i = 0; i < (length - 1 >> 1); i++) { *coeffs += a1; coeffs[1] += *coeffs; a1 = coeffs[1]; coeffs += 2; } if ((length - 1) & 1) *coeffs += a1; } else if (mode == 2) { a1 = coeffs[1]; a2 = a1 + *coeffs; coeffs[1] = a2; if (length > 2) { coeffs += 2; for (i = 0; i < (length - 2 >> 1); i++) { a3 = *coeffs + a1; a4 = a3 + a2; *coeffs = a4; a1 = coeffs[1] + a3; a2 = a1 + a4; coeffs[1] = a2; coeffs += 2; } if (length & 1) *coeffs += a1 + a2; } } else if (mode == 3) { a1 = coeffs[1]; a2 = a1 + *coeffs; coeffs[1] = a2; if (length > 2) { a3 = coeffs[2]; a4 = a3 + a1; a5 = a4 + a2; coeffs += 3; for (i = 0; i < length - 3; i++) { a3 += *coeffs; a4 += a3; a5 += a4; *coeffs = a5; coeffs++; } } } } static int decode_segment(TAKDecContext *s, int8_t value, int32_t *dst, int len) { GetBitContext *gb = &s->gb; if (!value) { memset(dst, 0, len * 4); } else { int x, y, z, i = 0; value--; do { while (1) { x = get_bits_long(gb, xcodes[value].init); if (x >= xcodes[value].escape) break; dst[i++] = (x >> 1) ^ -(x & 1); if (i >= len) return 0; } y = get_bits1(gb); x = (y << xcodes[value].init) | x; if (x >= xcodes[value].aescape) { int c = get_unary(gb, 1, 9); if (c == 9) { int d; z = x + xcodes[value].bias; d = get_bits(gb, 3); if (d == 7) { d = get_bits(gb, 5) + 7; if (d > 29) return AVERROR_INVALIDDATA; } if (d) z += xcodes[value].scale * (get_bits_long(gb, d) + 1); } else { z = xcodes[value].scale * c + x - xcodes[value].escape; } } else { z = x - (xcodes[value].escape & -y); } dst[i++] = (z >> 1) ^ -(z & 1); } while (i < len); } return 0; } static int xget(TAKDecContext *s, int d, int q) { int x; x = d / q; s->rval = d - (x * q); if (s->rval < q / 2) { s->rval += q; } else { x++; } if (x <= 1 || x > 128) return -1; return x; } static int get_len(TAKDecContext *s, int b) { if (b >= s->wlength - 1) return s->rval; else return s->uval; } static int decode_coeffs(TAKDecContext *s, int32_t *dst, int length) { GetBitContext *gb = &s->gb; int i, v, ret; if (length > s->nb_samples) return AVERROR_INVALIDDATA; if (get_bits1(gb)) { if ((s->wlength = xget(s, length, s->uval)) < 0) return AVERROR_INVALIDDATA; s->coding_mode[0] = v = get_bits(gb, 6); if (s->coding_mode[0] > FF_ARRAY_ELEMS(xcodes)) return AVERROR_INVALIDDATA; for (i = 1; i < s->wlength; i++) { int c = get_unary(gb, 1, 6); if (c > 5) { v = get_bits(gb, 6); } else if (c > 2) { int t = get_bits1(gb); v += (-t ^ (c - 1)) + t; } else { v += (-(c & 1) ^ (((c & 1) + c) >> 1)) + (c & 1); } if (v > FF_ARRAY_ELEMS(xcodes)) return AVERROR_INVALIDDATA; s->coding_mode[i] = v; } i = 0; while (i < s->wlength) { int len = 0; v = s->coding_mode[i]; do { len += get_len(s, i); i++; if (i == s->wlength) break; } while (v == s->coding_mode[i]); if ((ret = decode_segment(s, v, dst, len)) < 0) return ret; dst += len; } } else { v = get_bits(gb, 6); if (v > FF_ARRAY_ELEMS(xcodes)) return AVERROR_INVALIDDATA; if ((ret = decode_segment(s, v, dst, length)) < 0) return ret; } return 0; } static int get_b(GetBitContext *gb) { if (get_bits1(gb)) return get_bits(gb, 4) + 1; else return 0; } static int decode_subframe(TAKDecContext *s, int32_t *ptr, int subframe_size, int prev_subframe_size) { GetBitContext *gb = &s->gb; int tmp, x, y, i, j, ret = 0; int tfilter[MAX_PREDICTORS]; if (get_bits1(gb)) { s->filter_order = predictor_sizes[get_bits(gb, 4)]; if (prev_subframe_size > 0 && get_bits1(gb)) { if (s->filter_order > prev_subframe_size) return AVERROR_INVALIDDATA; ptr -= s->filter_order; subframe_size += s->filter_order; if (s->filter_order > subframe_size) return AVERROR_INVALIDDATA; } else { int lpc; if (s->filter_order > subframe_size) return AVERROR_INVALIDDATA; lpc = get_bits(gb, 2); if (lpc > 2) return AVERROR_INVALIDDATA; if ((ret = decode_coeffs(s, ptr, s->filter_order)) < 0) return ret; decode_lpc(ptr, lpc, s->filter_order); } s->xred = get_b(gb); s->size = get_bits1(gb) + 5; if (get_bits1(gb)) { s->ared = get_bits(gb, 3) + 1; if (s->ared > 7) return AVERROR_INVALIDDATA; } else { s->ared = 0; } s->predictors[0] = get_code(gb, 10); s->predictors[1] = get_code(gb, 10); s->predictors[2] = get_code(gb, s->size + 1) << (9 - s->size); s->predictors[3] = get_code(gb, s->size + 1) << (9 - s->size); if (s->filter_order > 4) { tmp = s->size + 1 - get_bits1(gb); for (i = 4; i < s->filter_order; i++) { if (!(i & 3)) x = tmp - get_bits(gb, 2); s->predictors[i] = get_code(gb, x) << (9 - s->size); } } tfilter[0] = s->predictors[0] << 6; for (i = 1; i < s->filter_order; i++) { int32_t *p1 = &tfilter[0]; int32_t *p2 = &tfilter[i - 1]; for (j = 0; j < (i + 1) / 2; j++) { x = *p1 + (s->predictors[i] * *p2 + 256 >> 9); *p2 += s->predictors[i] * *p1 + 256 >> 9; *p1++ = x; p2--; } tfilter[i] = s->predictors[i] << 6; } x = -1 << (32 - (s->ared + 5)); y = 1 << ((s->ared + 5) - 1); for (i = 0, j = s->filter_order - 1; i < s->filter_order / 2; i++, j--) { tmp = y + tfilter[j]; s->filter[j] = -(x & -(y + tfilter[i] >> 31) | (y + tfilter[i]) >> (s->ared + 5)); s->filter[i] = -(x & -(tmp >> 31) | (tmp >> s->ared + 5)); } if ((ret = decode_coeffs(s, &ptr[s->filter_order], subframe_size - s->filter_order)) < 0) return ret; for (i = 0; i < s->filter_order; i++) s->residues[i] = *ptr++ >> s->xred; y = FF_ARRAY_ELEMS(s->residues) - s->filter_order; x = subframe_size - s->filter_order; while (x > 0) { tmp = FFMIN(y, x); for (i = 0; i < tmp; i++) { int v, w, m; v = 1 << (10 - s->ared - 1); if (!(s->filter_order & 15)) { v += s->dsp.scalarproduct_int16(&s->residues[i], s->filter, s->filter_order); } else if (s->filter_order & 4) { for (j = 0; j < s->filter_order; j += 4) { v += s->residues[i + j + 3] * s->filter[j + 3] + s->residues[i + j + 2] * s->filter[j + 2] + s->residues[i + j + 1] * s->filter[j + 1] + s->residues[i + j ] * s->filter[j ]; } } else { for (j = 0; j < s->filter_order; j += 8) { v += s->residues[i + j + 7] * s->filter[j + 7] + s->residues[i + j + 6] * s->filter[j + 6] + s->residues[i + j + 5] * s->filter[j + 5] + s->residues[i + j + 4] * s->filter[j + 4] + s->residues[i + j + 3] * s->filter[j + 3] + s->residues[i + j + 2] * s->filter[j + 2] + s->residues[i + j + 1] * s->filter[j + 1] + s->residues[i + j ] * s->filter[j ]; } } m = (-1 << (32 - (10 - s->ared))) & -(v >> 31) | (v >> 10 - s->ared); m = av_clip(m, -8192, 8191); w = (m << s->xred) - *ptr; *ptr++ = w; s->residues[s->filter_order + i] = w >> s->xred; } x -= tmp; if (x > 0) memcpy(s->residues, &s->residues[y], 2 * s->filter_order); } emms_c(); } else { ret = decode_coeffs(s, ptr, subframe_size); } return ret; } static int decode_channel(TAKDecContext *s, int chan) { AVCodecContext *avctx = s->avctx; GetBitContext *gb = &s->gb; int32_t *dst = s->decoded[chan]; int i = 0, ret, prev = 0; int left = s->nb_samples - 1; s->sample_shift[chan] = get_b(gb); if (s->sample_shift[chan] >= avctx->bits_per_raw_sample) return AVERROR_INVALIDDATA; *dst++ = get_code(gb, avctx->bits_per_raw_sample - s->sample_shift[chan]); s->lpc_mode[chan] = get_bits(gb, 2); s->nb_subframes = get_bits(gb, 3) + 1; if (s->nb_subframes > 1) { if (get_bits_left(gb) < (s->nb_subframes - 1) * 6) return AVERROR_INVALIDDATA; for (; i < s->nb_subframes - 1; i++) { int v = get_bits(gb, 6); s->subframe_len[i] = (v - prev) * s->subframe_scale; if (s->subframe_len[i] <= 0) return AVERROR_INVALIDDATA; left -= s->subframe_len[i]; prev = v; } if (left <= 0) return AVERROR_INVALIDDATA; } s->subframe_len[i] = left; prev = 0; for (i = 0; i < s->nb_subframes; i++) { if ((ret = decode_subframe(s, dst, s->subframe_len[i], prev)) < 0) return ret; dst += s->subframe_len[i]; prev = s->subframe_len[i]; } return 0; } static int decorrelate(TAKDecContext *s, int c1, int c2, int length) { GetBitContext *gb = &s->gb; uint32_t *p1 = s->decoded[c1] + 1; uint32_t *p2 = s->decoded[c2] + 1; int a, b, i, x, tmp; if (s->dmode > 3) { s->dshift = get_b(gb); if (s->dmode > 5) { if (get_bits1(gb)) s->filter_order = 16; else s->filter_order = 8; s->dval1 = get_bits1(gb); s->dval2 = get_bits1(gb); for (i = 0; i < s->filter_order; i++) { if (!(i & 3)) x = 14 - get_bits(gb, 3); s->filter[i] = get_code(gb, x); } } else { s->dfactor = get_code(gb, 10); } } switch (s->dmode) { case 1: for (i = 0; i < length; i++, p1++, p2++) *p2 += *p1; break; case 2: for (i = 0; i < length; i++, p1++, p2++) *p1 = *p2 - *p1; break; case 3: for (i = 0; i < length; i++, p1++, p2++) { x = (*p2 & 1) + 2 * *p1; a = -*p2 + x; b = *p2 + x; *p1 = a & 0x80000000 | (a >> 1); *p2 = b & 0x80000000 | (b >> 1); } break; case 4: FFSWAP(uint32_t *, p1, p2); case 5: if (s->dshift) tmp = -1 << (32 - s->dshift); else tmp = 0; for (i = 0; i < length; i++, p1++, p2++) { x = s->dfactor * (tmp & -(*p2 >> 31) | (*p2 >> s->dshift)) + 128; *p1 = ((-(x >> 31) & 0xFF000000 | (x >> 8)) << s->dshift) - *p1; } break; case 6: FFSWAP(uint32_t *, p1, p2); case 7: if (length < 256) return AVERROR_INVALIDDATA; a = s->filter_order / 2; b = length - (s->filter_order - 1); if (s->dval1) { for (i = 0; i < a; i++) p1[i] += p2[i]; } if (s->dval2) { x = a + b; for (i = 0; i < length - x; i++) p1[x + i] += p2[x + i]; } for (i = 0; i < s->filter_order; i++) s->residues[i] = *p2++ >> s->dshift; p1 += a; x = FF_ARRAY_ELEMS(s->residues) - s->filter_order; for (; b > 0; b -= tmp) { tmp = FFMIN(b, x); for (i = 0; i < tmp; i++) s->residues[s->filter_order + i] = *p2++ >> s->dshift; for (i = 0; i < tmp; i++) { int v, w, m; v = 1 << 9; if (s->filter_order == 16) { v += s->dsp.scalarproduct_int16(&s->residues[i], s->filter, s->filter_order); } else { v += s->residues[i + 7] * s->filter[7] + s->residues[i + 6] * s->filter[6] + s->residues[i + 5] * s->filter[5] + s->residues[i + 4] * s->filter[4] + s->residues[i + 3] * s->filter[3] + s->residues[i + 2] * s->filter[2] + s->residues[i + 1] * s->filter[1] + s->residues[i ] * s->filter[0]; } m = (-1 << 22) & -(v >> 31) | (v >> 10); m = av_clip(m, -8192, 8191); w = (m << s->dshift) - *p1; *p1++ = w; } memcpy(s->residues, &s->residues[tmp], 2 * s->filter_order); } emms_c(); break; } return 0; } static int tak_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *pkt) { TAKDecContext *s = avctx->priv_data; GetBitContext *gb = &s->gb; int chan, i, ret, hsize; int32_t *p; if (pkt->size < TAK_MIN_FRAME_HEADER_BYTES) return AVERROR_INVALIDDATA; init_get_bits(gb, pkt->data, pkt->size * 8); if ((ret = ff_tak_decode_frame_header(avctx, gb, &s->ti, 0)) < 0) return ret; if (avctx->err_recognition & AV_EF_CRCCHECK) { hsize = get_bits_count(gb) / 8; if (ff_tak_check_crc(pkt->data, hsize)) { av_log(avctx, AV_LOG_ERROR, "CRC error\n"); return AVERROR_INVALIDDATA; } } if (s->ti.codec != 2 && s->ti.codec != 4) { av_log(avctx, AV_LOG_ERROR, "unsupported codec: %d\n", s->ti.codec); return AVERROR_PATCHWELCOME; } if (s->ti.data_type) { av_log(avctx, AV_LOG_ERROR, "unsupported data type: %d\n", s->ti.data_type); return AVERROR_INVALIDDATA; } if (s->ti.codec == 2 && s->ti.channels > 2) { av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n", s->ti.channels); return AVERROR_INVALIDDATA; } if (s->ti.channels > 6) { av_log(avctx, AV_LOG_ERROR, "unsupported number of channels: %d\n", s->ti.channels); return AVERROR_INVALIDDATA; } if (s->ti.frame_samples <= 0) { av_log(avctx, AV_LOG_ERROR, "unsupported/invalid number of samples\n"); return AVERROR_INVALIDDATA; } if (s->ti.bps != avctx->bits_per_raw_sample) { avctx->bits_per_raw_sample = s->ti.bps; if ((ret = tak_set_bps(avctx, avctx->bits_per_raw_sample)) < 0) return ret; } if (s->ti.sample_rate != avctx->sample_rate) { avctx->sample_rate = s->ti.sample_rate; s->uval = get_scale(avctx->sample_rate, get_shift(avctx->sample_rate)); s->subframe_scale = get_scale(avctx->sample_rate, 1); } if (s->ti.ch_layout) avctx->channel_layout = s->ti.ch_layout; avctx->channels = s->ti.channels; s->nb_samples = s->ti.last_frame_samples ? s->ti.last_frame_samples : s->ti.frame_samples; s->frame.nb_samples = s->nb_samples; if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) return ret; if (avctx->bits_per_raw_sample <= 16) { av_fast_malloc(&s->decode_buffer, &s->decode_buffer_size, sizeof(*s->decode_buffer) * FFALIGN(s->nb_samples, 8) * avctx->channels + FF_INPUT_BUFFER_PADDING_SIZE); if (!s->decode_buffer) return AVERROR(ENOMEM); for (chan = 0; chan < avctx->channels; chan++) s->decoded[chan] = s->decode_buffer + chan * FFALIGN(s->nb_samples, 8); } else { for (chan = 0; chan < avctx->channels; chan++) s->decoded[chan] = (int32_t *)s->frame.data[chan]; } if (s->nb_samples < 16) { for (chan = 0; chan < avctx->channels; chan++) { p = s->decoded[chan]; for (i = 0; i < s->nb_samples; i++) *p++ = get_code(gb, avctx->bits_per_raw_sample); } } else { if (s->ti.codec == 2) { for (chan = 0; chan < avctx->channels; chan++) { if (ret = decode_channel(s, chan)) return ret; } if (avctx->channels == 2) { s->nb_subframes = get_bits(gb, 1) + 1; if (s->nb_subframes > 1) s->subframe_len[1] = get_bits(gb, 6); s->dmode = get_bits(gb, 3); if (ret = decorrelate(s, 0, 1, s->nb_samples - 1)) return ret; } } else if (s->ti.codec == 4) { if (get_bits1(gb)) { int ch_mask = 0; chan = get_bits(gb, 4) + 1; if (chan > avctx->channels) return AVERROR_INVALIDDATA; for (i = 0; i < chan; i++) { int nbit = get_bits(gb, 4); if (nbit >= avctx->channels) return AVERROR_INVALIDDATA; if (ch_mask & 1 << nbit) return AVERROR_INVALIDDATA; s->mcdparams[i].present = get_bits1(gb); if (s->mcdparams[i].present) { s->mcdparams[i].index = get_bits(gb, 2); s->mcdparams[i].chan2 = get_bits(gb, 4); if (s->mcdparams[i].index == 1) { if ((nbit == s->mcdparams[i].chan2) || (ch_mask & 1 << s->mcdparams[i].chan2)) return AVERROR_INVALIDDATA; ch_mask |= 1 << s->mcdparams[i].chan2; } else if (!(ch_mask & 1 << s->mcdparams[i].chan2)) { return AVERROR_INVALIDDATA; } } s->mcdparams[i].chan1 = nbit; ch_mask |= 1 << nbit; } } else { chan = avctx->channels; for (i = 0; i < chan; i++) { s->mcdparams[i].present = 0; s->mcdparams[i].chan1 = i; } } for (i = 0; i < chan; i++) { if (s->mcdparams[i].present && s->mcdparams[i].index == 1) { if (ret = decode_channel(s, s->mcdparams[i].chan2)) return ret; } if (ret = decode_channel(s, s->mcdparams[i].chan1)) return ret; if (s->mcdparams[i].present) { s->dmode = mc_dmodes[s->mcdparams[i].index]; if (ret = decorrelate(s, s->mcdparams[i].chan2, s->mcdparams[i].chan1, s->nb_samples - 1)) return ret; } } } for (chan = 0; chan < avctx->channels; chan++) { p = s->decoded[chan]; decode_lpc(p, s->lpc_mode[chan], s->nb_samples); if (s->sample_shift[chan] > 0) { for (i = 0; i < s->nb_samples; i++) *p++ <<= s->sample_shift[chan]; } } } align_get_bits(gb); skip_bits(gb, 24); if (get_bits_left(gb) < 0) av_log(avctx, AV_LOG_DEBUG, "overread\n"); else if (get_bits_left(gb) > 0) av_log(avctx, AV_LOG_DEBUG, "underread\n"); if (avctx->err_recognition & AV_EF_CRCCHECK) { if (ff_tak_check_crc(pkt->data + hsize, get_bits_count(gb) / 8 - hsize)) { av_log(avctx, AV_LOG_ERROR, "CRC error\n"); return AVERROR_INVALIDDATA; } } // convert to output buffer switch (avctx->bits_per_raw_sample) { case 8: for (chan = 0; chan < avctx->channels; chan++) { uint8_t *samples = (uint8_t *)s->frame.data[chan]; p = s->decoded[chan]; for (i = 0; i < s->nb_samples; i++, p++) *samples++ = *p + 0x80; } break; case 16: for (chan = 0; chan < avctx->channels; chan++) { int16_t *samples = (int16_t *)s->frame.data[chan]; p = s->decoded[chan]; for (i = 0; i < s->nb_samples; i++, p++) *samples++ = *p; } break; case 24: for (chan = 0; chan < avctx->channels; chan++) { int32_t *samples = (int32_t *)s->frame.data[chan]; for (i = 0; i < s->nb_samples; i++) *samples++ <<= 8; } break; } *got_frame_ptr = 1; *(AVFrame *)data = s->frame; return pkt->size; } static av_cold int tak_decode_close(AVCodecContext *avctx) { TAKDecContext *s = avctx->priv_data; av_freep(&s->decode_buffer); return 0; } AVCodec ff_tak_decoder = { .name = "tak", .type = AVMEDIA_TYPE_AUDIO, .id = AV_CODEC_ID_TAK, .priv_data_size = sizeof(TAKDecContext), .init = tak_decode_init, .close = tak_decode_close, .decode = tak_decode_frame, .capabilities = CODEC_CAP_DR1, .long_name = NULL_IF_CONFIG_SMALL("TAK (Tom's lossless Audio Kompressor)"), .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P, AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_NONE }, };